lace.Engine.clustermap
- Engine.clustermap(fn_name: str, *, indices=None, linkage_method='ward', no_plot=False, fn_kwargs=None, **kwargs) ClusterMap
Generate a clustermap of a pairwise function.
- Parameters:
fn_name (str) – The name of the function: ‘rowsim’, ‘mi’, or ‘depprob’
indices (List[index], optional) – An optional list of indices from which to generate pairs. The output will be the function computed over the Cartesian product of
indices
. IfNone
(default), all indices will be considered.linkage_method (str, optional) – The linkage method for computing the hierarchical clustering over the pairwise function values. This values is passed to [
scipy.cluster.hierarchy.linkage
](https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage)no_plot (bool, optional) – If true, returns the linkage, and clustered pairwise function, but does not build a plot
fn_kwargs (dict, optional) – Keyword arguments passed to the target function
imshow (All other arguments passed to plotly) –
- Returns:
The result of the computation. Contains the following fields: - df: the clusterd polars.DataFrame computed by
pairwise_fn
- linkage: the scipy-generated linkage - figure (optional): the plotly figure- Return type:
ClusterMap
Examples
Compute a dependence probability clustermap
>>> from lace.examples import Animals >>> animals = Animals() >>> animals.clustermap( ... "depprob", zmin=0, zmax=1, color_continuous_scale="greys" ... ).figure.show() {...}
Use the
fn_kwargs
keyword argument to pass keyword arguments to the target function.>>> animals.clustermap( ... "rowsim", ... zmin=0, ... zmax=1, ... color_continuous_scale="greys", ... fn_kwargs={"wrt": ["swims"]}, ... ).figure.show() {...}